Enrollment No.

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Rajkot

Affiliated to Saurashtra University, Rajkot

SEMESTER END EXAMINATION APRIL - 2018

M.Sc. Mathematics

16PMTCC17 – FUNCTIONAL ANALYSIS

Duration of Exam – 3 hrs

Semester – IV

Max. Marks - 70

 $\underline{Part A} (5X2 = 10 marks)$

Answer <u>ALL</u> questions

- 1. Explain complete space with an example.
- 2. Define: B(X,Y).
- 3. Define: Hilbert spaces.
- 4. Define: Hilbert adjoint operator.
- 5. Are every finite dimensional normed space is reflexive? Why?

<u>Part B</u> (5x5= 25 marks) Answer ALL questions

- 6a. State and prove Riesz lemma.
- OR
- 6b. Define equivalent norms. Prove that on a finite dimensional vector space X any norm $\|.\|$ is equivalent to any other norm $\|.\|_0$.
- 7a. Show that the dual space of l^1 is l^{∞} .

OR

- 7b. Define a linear operator. Show that for a linear operator T, the range $\Re(T)$ is a vector space.
- 8a. Let X be an inner product space over K and $x, y \in X$ be such that x is orthogonal to y, then $||x+y||^2 = ||x||^2 + ||y||^2$. If X be a real inner product space then $||x+y||^2 = ||x||^2 + ||y||^2$ implies x is orthogonal to y.

OR

8b. In an inner product space X, $\langle x, u \rangle = \langle x, v \rangle$, $\forall x$, show that u = v. Let $x \neq 0$, $y \neq 0$, if x is orthogonal to y, then show that $\{x, y\}$ is linearly independent.

9a. State and prove Hahn Banach Theorem for normed spaces.

OR

- 9b. Let H_1 and H_2 be Hilbert spaces. $T: H_1 \to H_2$ be the bounded linear operators. Then show that i) $\langle T^*y, x \rangle = \langle y, Tx \rangle, \forall x \in H_1, y \in H_2$
 - ii) $||T^*T|| = ||TT^*|| = ||T||^2$

10a. Let X be a normed space and $\{x_n\}$ be a sequence in X. Then show that the sequence $\{||x_n||\}$ is bounded.

OR

10b. State and prove Uniform boundedness theorem.

11a. Show that the Banach space $L^{p}[a,b]$ is the completion of the normed space which consists of all continuous real valued functions on [a,b].

OR

- 11b. In a finite dimensional normed space X, any subset $M \subset X$ is compact if and only if M is closed and bounded.
- 12a. Let T be a linear operator. Then prove that,
 - i) the range R(T) is a vector space
 - ii) if dim $D(T) < \infty$ and T^{-1} exists, then dim $R(T) = \dim D(T)$

OR

- 12b. Prove that the dual space X' of a normed space X is a Banach space.
- 13a. Orthonormalize the first three terms of the sequence $(x_0, x_1, x_2, ...)$ where $x_j(t) = t^j$ on the interval [-1,1] where $\langle x, y \rangle = \int_{-1}^{1} x(t) y(t) dt$.

OR

- 13b. An orthonormal set *M* in a Hilbert space *H* is a total in *H* if and only if for all fixed $x \in H$, the Parseval relation $\sum_{k} |\langle x, e_k \rangle|^2 = ||x||^2$ holds.
- 14a. Let the operators $U, V: H \rightarrow H$ be Unitary, where H is a Hilbert space. Then prove that
 - i) U is isometric.
 - ii) UV is Unitary.
 - iii) U is normal.

OR

14b. Prove: Let X be a normed space and $x_o \neq 0$ be any element of X. Thus there exist bounded linear functional \tilde{f} on X such that $\|\tilde{f}\| = 1$, $\tilde{f}(x_o) = \|x_o\|$. For every x in normed space X,

$$||x|| = \sup_{f \in X'} \frac{|f(x)|}{||f||}.$$

15a. For a normed space X, prove that a strong convergence in X implies weak convergence. Is the converse true? Justify your answer.

OR

15b. State and prove closed graph theorem